ogy

ATAI
Advanced
Technique of
Artificial

Generative-Contrastive Graph Learning for Recommendation

Yonghui Yang Key Laboratory of Knowledge Engineering with Big Data, Hefei University of Technology yyh.hfut@gmail.com

Kun Zhang
Key Laboratory of Knowledge
Engineering with Big Data,
Hefei University of Technology
zhang1028kun@gmail.com

Jun Zhou Ant Group jun.zhoujun@antfin.com

Zhengwei Wu Ant Group zejun.wzw@antfin.com

Richang Hong
Key Laboratory of Knowledge
Engineering with Big Data,
Hefei University of Technology
hongrc.hfut@gmail.com

Meng Wang
Key Laboratory of Knowledge
Engineering with Big Data,
Hefei University of Technology
Institute of Artificial Intelligence,
Hefei Comprehensive National

Le Wu*

Key Laboratory of Knowledge

Engineering with Big Data,

Hefei University of Technology

lewu.ustc@gmail.com

Zhiqiang Zhang

Ant Group

lingyao.zzq@antfin.com

Science Center eric.mengwang@gmail.com

(SIGIR-2023)

github.com/yimutianyang/SIGIR23-VGCL

Reported by Ke Gan

- 1. Introduction
- 2. Approach
- 3. Experiments

Introduction

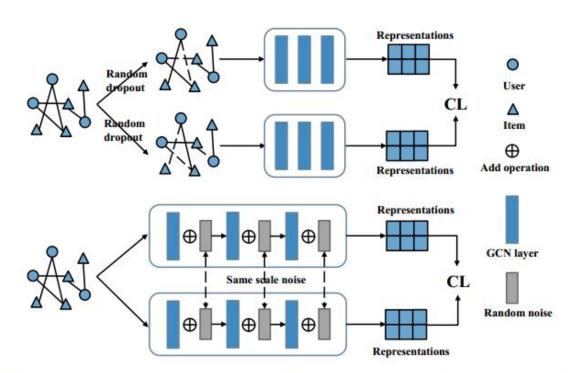


Figure 1: Graph contrastive learning paradigms with structure and feature data augmentation.

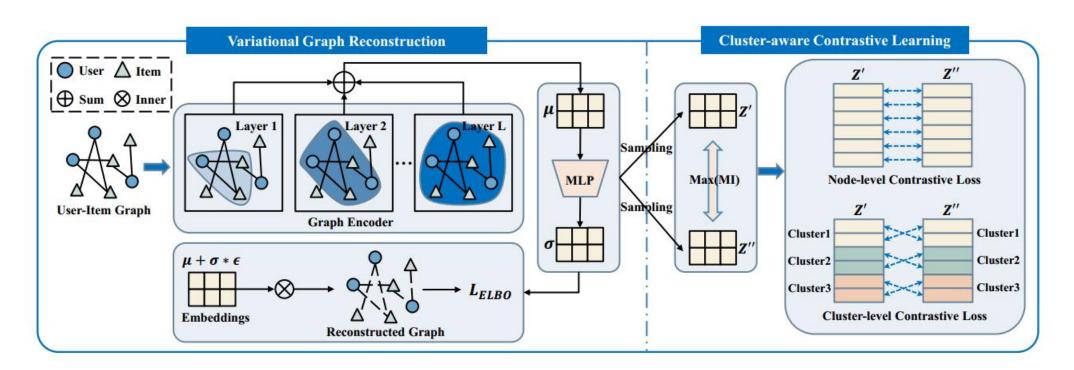
structure augmentation randomly perturb graph structure to obtain two augmented views

$$\mathbf{E}' = \mathcal{E}(\mathcal{G}', \mathbf{E}^0), \mathbf{E}'' = \mathcal{E}(\mathcal{G}'', \mathbf{E}^0), \tag{7}$$

feature augmentation adds random noises into node embeddings, then generate contrastive representations with GNNs

$$\mathbf{E}' = \mathcal{E}(\mathbf{E}^0, \epsilon \delta'), \mathbf{E}'' = \mathcal{E}(\mathbf{E}^0, \epsilon \delta''), \tag{8}$$

 $\delta', \delta'' \sim U(0, 1)$ are uniform noises, ϵ is the amplitude that controls noise scale.



$$\mathbf{A} = \begin{bmatrix} \mathbf{0}^{M \times M} & \mathbf{R} \\ \mathbf{R}^T & \mathbf{0}^{N \times N} \end{bmatrix}.$$

$$\mathbf{E}^{l} = \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \mathbf{E}^{l-1}, \tag{2}$$

(1)

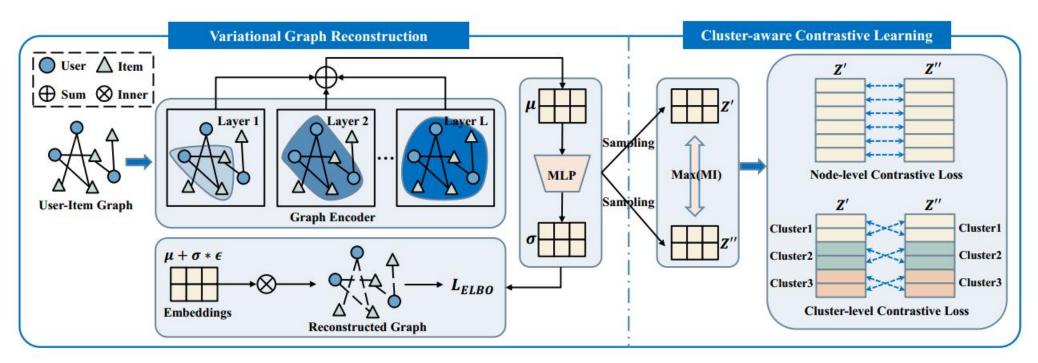
(3)

$$\mathbf{E} = Readout(\mathbf{E}^0, \mathbf{E}^1, ..., \mathbf{E}^L).$$

$$\mathcal{L}_{rec} = \sum_{a=0}^{M-1} \sum_{(i,j) \in D_a} -log\sigma(\hat{r}_{ai} - \hat{r}_{aj}) + \lambda ||E^0||^2, \tag{4}$$

$$\mathcal{L}_{cl} = \sum_{i \in \mathcal{B}} -log \frac{exp(\mathbf{e}_{i}^{\prime T} \mathbf{e}_{i}^{\prime \prime} / \tau)}{\sum\limits_{j \in \mathcal{B}} exp(\mathbf{e}_{i}^{\prime T} \mathbf{e}_{j}^{\prime \prime} / \tau)},$$
 (6)

$$\mathcal{L} = \mathcal{L}_{rec} + \alpha \mathcal{L}_{cl},\tag{5}$$



Graph Inference.

Gaussian distribution $q_{\phi}(\mathbf{z}_i|\mathbf{A},\mathbf{E}^0) = \mathcal{N}(\mathbf{z}_i|\mu_{\phi}(i),diag(\sigma_{\phi}^2(i)))$

$$\mu = GNN(\mathbf{A}, \mathbf{E}^0, \phi_{\mu}), \sigma = GNN(\mathbf{A}, \mathbf{E}^0, \phi_{\sigma}), \tag{11}$$

$$\mu_i^l = \sum_{j \in \mathcal{N}_i} \frac{1}{\sqrt{|\mathcal{N}_i|} \sqrt{|\mathcal{N}_j|}} \mu_i^{l-1},\tag{12}$$

$$\mu = \frac{1}{L} \sum_{l=1}^{L} \mu^{l}, \, \sigma = MLP(\mu),$$
 (13)

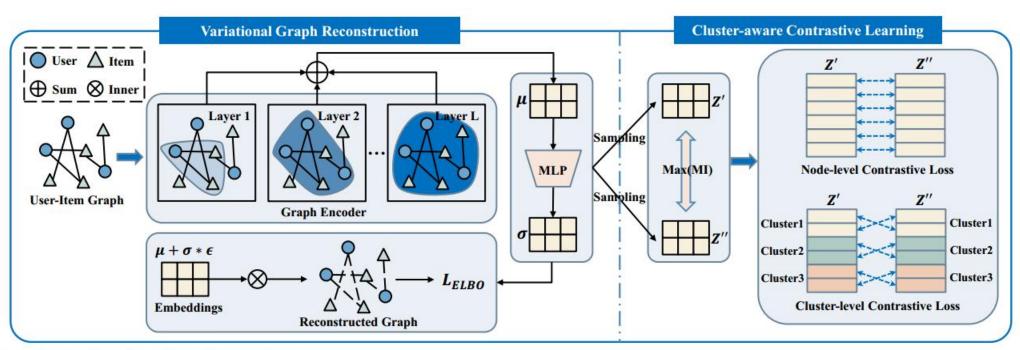
$$\mathbf{z}_i = \mu_i + \sigma_i \cdot \varepsilon, \tag{14}$$

Graph Generation.

$$p(\mathbf{A}|\mathbf{Z}) = \prod_{i=0}^{M+N-1} \prod_{j=0}^{M+N-1} p(\mathbf{A}_{ij}|\mathbf{z}_i, \mathbf{z}_j).$$
 (15)

$$p(\mathbf{A}_{ij} = 1 | \mathbf{z}_i, \mathbf{z}_j) = \sigma(\mathbf{z}_i^T \mathbf{z}_j), \tag{16}$$

Approach



Cluster-aware Contrastive Learning

$$\mathbf{z}_{i}' = \mu_{i} + \sigma_{i} \cdot \varepsilon',\tag{17}$$

$$\mathbf{z}_{i}^{\prime\prime} = \mu_{i} + \sigma_{i} \cdot \varepsilon^{\prime\prime},\tag{18}$$

$$\mathcal{L}_{N}^{U} = \sum_{a \in \mathcal{B}_{u}} -log \frac{exp(\mathbf{z}_{a}^{\prime T} \mathbf{z}_{a}^{\prime \prime} / \tau_{1})}{\sum\limits_{b \in \mathcal{B}_{u}} exp(\mathbf{z}_{a}^{\prime T} \mathbf{z}_{b}^{\prime \prime} / \tau_{1})}, \tag{19}$$

$$\mathcal{L}_{N}^{I} = \sum_{i \in \mathcal{B}_{i}} -log \frac{exp(\mathbf{z}_{i}^{'T}\mathbf{z}_{i}^{"}/\tau_{1})}{\sum\limits_{j \in \mathcal{B}_{i}} exp(\mathbf{z}_{i}^{'T}\mathbf{z}_{j}^{"}/\tau_{1})},$$
(20)

$$p(a,b) = \sum_{k=0}^{K_u - 1} p(\mathbf{c}_k^u | \mathbf{z}_a) p(\mathbf{c}_k^u | \mathbf{z}_b),$$
 (21)

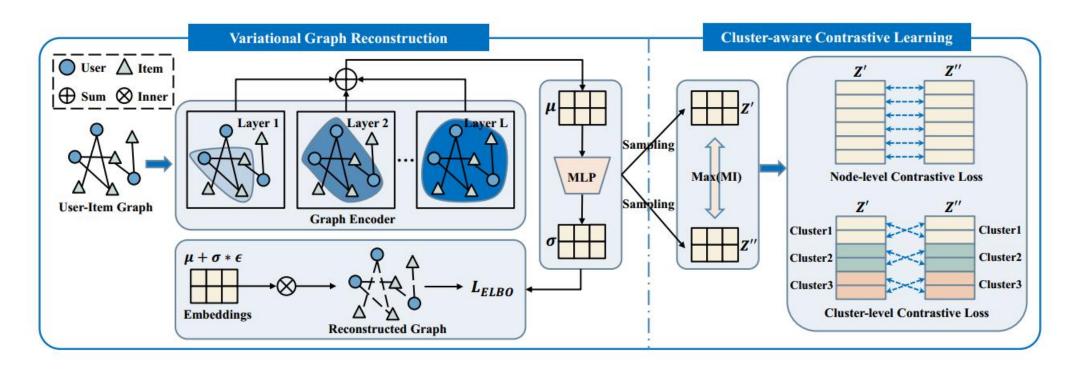
$$p(i,j) = \sum_{h=0}^{K_i - 1} p(\mathbf{c}_h^i | \mathbf{z}_i) p(\mathbf{c}_h^i | \mathbf{z}_j),$$
 (22)

$$p(i,j) = \sum_{h=0}^{K_i - 1} p(\mathbf{c}_h^i | \mathbf{z}_i) p(\mathbf{c}_h^i | \mathbf{z}_j), \tag{22}$$

$$\mathcal{L}_C^U = \sum_{a \in \mathcal{B}_u} \frac{-1}{SP(a)} log(\frac{\sum_{b \in \mathcal{B}_u, b! = a} p(a, b) exp(\mathbf{z'}_a^T \mathbf{z''}_b / \tau_2)}{\sum_{b \in \mathcal{B}_u, b! = a} exp(\mathbf{z'}_a^T \mathbf{z''}_b / \tau_2)}), \tag{23}$$

$$\mathcal{L}_{C}^{I} = \sum_{i \in \mathcal{B}_{i}} \frac{-1}{SP(i)} log(\frac{\sum\limits_{j \in \mathcal{B}_{i}, j! = i} p(i, j) exp(\mathbf{z'}_{i}^{T} \mathbf{z''}_{j} / \tau_{2})}{\sum\limits_{j \in \mathcal{B}_{i}, j! = i} exp(\mathbf{z'}_{i}^{T} \mathbf{z''}_{j} / \tau_{2})}), \tag{24}$$

Approach



$$\mathcal{L}_{cl} = \mathcal{L}_N + \gamma \mathcal{L}_C, \tag{25}$$

$$\mathcal{L}_{ELBO} = -\mathbb{E}_{\mathbf{Z} \sim q_{\phi}(\mathbf{Z}|\mathbf{A}, \mathbf{E}^{0})}[log(p_{\theta}(\mathbf{A}|\mathbf{Z}))] + KL[q_{\phi}(\mathbf{Z}|\mathbf{A}, \mathbf{E}^{0})||p(\mathbf{Z})].$$
(26)

$$\mathbb{E}_{\mathbf{Z} \sim q_{\phi}(\mathbf{Z}|\mathbf{A},\mathbf{E}^{0})}[log(p_{\theta}(\mathbf{A}|\mathbf{Z}))] = \sum_{a=0}^{M-1} \sum_{(i,j) \in D_{a}} -log\sigma(\hat{r}_{ai} - \hat{r}_{aj})), \quad (27)$$

$$min \mathcal{L} = \mathcal{L}_{ELBO} + \alpha \mathcal{L}_{cl} + \lambda ||\mathbf{E}^{0}||^{2}, \tag{28}$$

Experiment

Table 1: The statistics of three datasets.

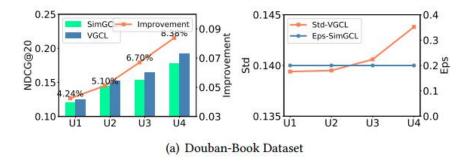
Datasets	Users	Items	Interactions	Density
Douban-Book	13,024	22,347	792,062	0.272%
Dianping	59,426	10,224	934,334	0.154%
Movielens-25M	92,901	8,826	2,605,952	0.318%

Table 2: Recommendation performances on three datasets. The best-performing model on each dataset and metrics are highlighted in bold, and the second-best model is underlined.

Models R@10	Douban-Book		Dianping			Movielens-25M						
	N@10	R@20	N@20	R@10	N@10	R@20	N@20	R@10	N@10	R@20	N@20	
BPR-MF	0.0869	0.0949	0.1296	0.1045	0.0572	0.0443	0.0934	0.0557	0.2152	0.2011	0.3163	0.2343
LightGCN	0.1042	0.1195	0.1516	0.1278	0.0679	0.0536	0.1076	0.0660	0.2258	0.2192	0.3263	0.2509
Multi-VAE	0.0941	0.1073	0.1376	0.1155	0.0645	0.0508	0.1046	0.0632	0.2188	0.2101	0.3185	0.2418
CVGA	0.1058	0.1305	0.1492	0.1359	0.0719	0.0562	0.1128	0.0690	0.2390	0.2306	0.3454	0.2641
SGL-ED	0.1103	0.1357	0.1551	0.1419	0.0719	0.0560	0.1111	0.0686	0.2298	0.2239	0.3274	0.2541
NCL	0.1121	0.1377	0.1576	0.1439	0.0727	0.0571	0.1124	0.0701	0.2281	0.2222	0.3274	0.2531
SimGCL	0.1218	0.1470	0.1731	0.1540	0.0768	0.0606	0.1208	0.0743	0.2428	0.2356	0.3491	0.2690
VGCL	0.1283	0.1564	0.1829	0.1638	0.0778	0.0616	0.1234	0.0757	0.2463	0.2400	0.3507	0.2725

Table 3: Ablation study of VGCL, VGCL-w/o C denotes without cluster-level contrastive loss and VGCL-w/o V denotes without the variational graph reconstruction part.

Models	Douban-Book		Dian	ping	Movielens-25M		
	R@20	N@20	R@20	N@20	R@20	N@20	
LightGCN	0.1512(-)	0.1271(-)	0.1076(-)	0.0660(-)	0.3263(-)	0.2509(-)	
SimGCL	0.1731(14.48%)	0.1540(+21.16%)	0.1208(+12.27%)	0.0743(+12.58%)	0.3491(+6.99%)	0.2690(+7.21%)	
VGCL-w/o C	0.1776(+17.46%)	0.1575(+23.92%)	0.1222(+13.57%)	0.0750(+13.64%)	0.3477(+6.56%)	0.2705(+7.81%)	
VGCL-w/o V	0.1722(+13.89%)	0.1547(+21.72%)	0.1218(+13.20%)	0.0746(+13.03%)	0.3493(+7.05%)	0.2702(+7.69%)	
VGCL	0.1829(+20.97%)	0.1638(+28.87%)	0.1233(+14.59%)	0.0756(+14.55%)	0.3507(+7.48%)	0.2725(+8.61%)	



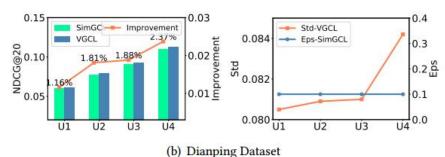


Figure 3: Performance comparisons under different user groups.

Table 4: Performance on different graph inference layer L.

Layers	Douba	n-Book	Dianping		
	Recall@20	NDCG@20	Recall@20	NDCG@20	
L=1	0.1750	0.1555	0.1197	0.0733	
L=2	0.1829	0.1638	0.1229	0.0751	
L=3	0.1808	0.1618	0.1234	0.0757	
L=4	0.1793	0.1605	0.1233	0.0752	

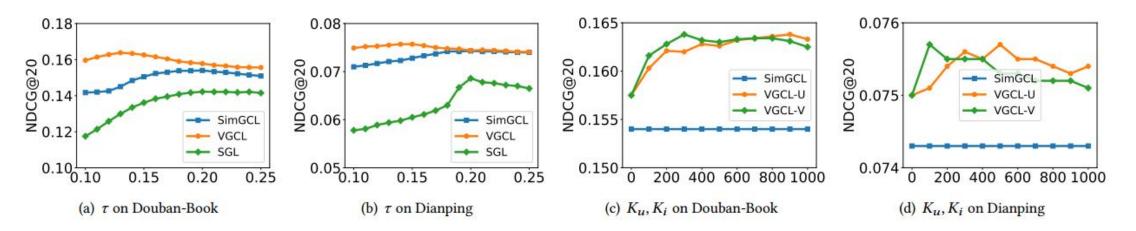


Figure 4: Performance comparisons w.r.t different temperature τ , prototype number K_u and K_i .

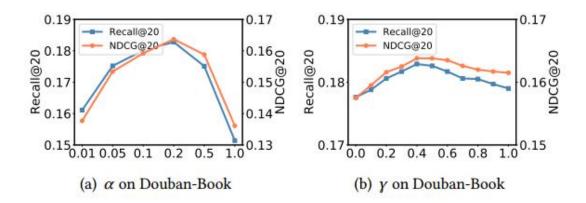


Figure 5: Performance comparisons under different contrastie loss weights α and γ .

Thank you!